

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-9, September 2017

 44 www.ijeas.org

Abstract— This paper reports the development experiences

and features of FULangS, a quasi, general-purpose scripting

paradigm developed at the Federal University Lokoja, Nigeria

as part of the requirements for a capstone course in Survey and

Organization of Programming Languages during the 2016/2017

Academic Session. FULangS was written in C programming

language, with the Flex/lex environment for lexical analysis,

Bison/yacc for semantic analysis and Cygwin, to build and

compile the flex/lex and yacc/bison files. The language is

compiled for the Microsoft Windows environment, and in

addition to being functional, FULangS is also an imperative

computer scripting paradigm, possessing the ability to describe

a sequence of steps that change the state of the computer.

FULangS scripts interprets to a virtual machine and offers

special feature support for stack machines and garbage

collection.

Index Terms— capstone, programming paradigm, scripting,

quasi-environments.

I. INTRODUCTION

 Generally, Programming describes a process that starts

from the original construction of a formal solution to a

computing problem and leading to the creation of codes based

on the syntax and semantics of a language –a programming

language. A programming language is an instruction tool that

structurally turns a formulated solution to a formalized one

based on its syntax and meaningful combination of its

elements [1], [2].

Computer languages are often classified according to their

purpose(s) of use. In this vein, programming languages refer

to those class of computer languages used by programmers to

develop software programs, scripts, or other sets of

instructions for computers to execute. Other classifications

are: markup languages, style sheet languages and scripting

languages. The author also grouped some languages based on

the development type: applications and programs

development, artificial intelligence development, for database

development, game development, computer drivers or other

hardware interface development, internet and web page

development, and script development. In addition to the

above classifications, author’s preference is also a major

factor in grouping computer languages and more specifically,

we have the imperative paradigm which is the oldest and

executes its commands sequentially; the object oriented (OO)

paradigm which represents software tokens in terms of

attributes/variables/parameters and behaviours/methods/state.

Other specific classes are functional and logical

paradigms-both of are at close proximities to the problem

 Francisca O. Oladipo, Computer Science Department, Federal

University, Lokoja, Nigeria, +2348034725167

Memunat A. Ibrahim, Computer Science Department, Federal

University, Lokoja, Nigeria

Abdul-Ahad U. Obansa, Computer Science Department, Federal

University, Lokoja, Nigeria

Abdulwahab A. Jatto, Computer Science Department, Federal

University, Lokoja, Nigeria

domain and can solve complex problems.

A computer Algorithm or computer program consists of

two essential parts, a description of actions which are to be

performed and a description of data which are manipulated by

these actions. Actions are described by statements and data

are described by declarations and definitions. The data are

represented by values of variables. Every variable occurring

in a statement must be introduced by a variable declaration,

data types are used to define the set of values which may be

assumed by the variable.

This paper reports on the evolution of a quasi-scripting

language named FULangS from a capstone undergraduate

course at the Federal University Lokoja Nigeria during the

2016/2017 session. A detailed description of the scripting

paradigm is presented in the next sections in addition to the

language elements and sample codes for the FULangS tool.

A. Scripting Programming Paradigm

Scripting is the art of writing scripts in between

programs written in programming languages like C, java, and

between scripts written in another scripting language. Script

codes are sequence of instructions and are often interpreted

and the primitive elements are in the form of direct calls for

elementary tasks and API. They can be embedded into large

component-based software to perform complex in

critical-sensitive applications, deployed to write codes that

target and automate operations on a software system. A

summary of the description of the scripting paradigm is given

by [3] as “a programming language that is used to manipulate,

customize, and automate the facilities of an existing system.

In such systems, useful functionality is already available

through a user interface, and the scripting language is a

mechanism for exposing that functionality to program

control”.

Scripting is essential as it allows a quicker development

of applications than the conventional method; encouraging a

rapid modification of applications as their requirements

change [4]. Unlike programming language, scripting

languages has been found very useful in developing new

applications from ‘off the shelf’ components and act as a glue

connecting existing software components to create a new one

[5]. Scripting languages are very useful in developing web

pages [6], software applications, embedded systems [7],

operating system shells, and games.

Scripting languages are most suitable in experimental

programming where efficiency is not as important as the

development speed to rapidly develop and test experimental

software or prototypes [8]. They are also used in the back-end

to control and support applications with programmable

front-end, and in developing a dynamic and responsive web

pages.

FULangS: A Capstone Scripting Tool

Francisca O. Oladipo, Memunat A. Ibrahim, Abdul-Ahad U. Obansa, Abdulwahab A. Jatto

FULangS: A Capstone Scripting Tool

 45 www.ijeas.org

B. Characteristics of scripting languages

1) Scripting languages are easier to learn and work

with: their simple syntax, abstraction of memory

management and data storage makes them to be

easily accessible even to non-programmers. This

feature also makes them to be preferred when

teaching beginner programmers [9].

2) Easier to debug: applications written in scripting

languages are easier to debug since interpreter’s

report errors as they are encountered and the

program execution is paused, making the location

and removal of errors easier. Since errors are

reported immediately, beginners can write programs

with less difficulty [10].

3) Low overheads and ease of use: scripting languages

increases the productivity of the users with features

they provide. Also, scripting languages provides

powerful string manipulation (regular expressions),

and easy access to low-level kernel services [6].

C. The General Anatomy of a Scripting Language

Most scripting languages codes like php, javascript

begin with an opening tag and end with a closing tag while

others like python have no tags. This is followed by

preprocess instructions like import statements. Unlike

traditional programming languages, scripting languages have

no entry point or main function, just block of statements or

expressions. These expressions are written by combining the

language elements which could be numbers (in base 10),

strings (in double quotation marks), arithmetic operators,

bitwise operators, relational operators, logical operators. The

elements are combined to form mathematical expressions,

call expressions which apply a function to a set of arguments,

Input/output Expressions, control structures expressions.

Also, every scripting language provides its user with a means

of writing comments as a form of documentation.

II. REVIEW OF RELATED WORKS

Various scripting languages has been built for different

purposes; for example: tool control language (TCL) was

designed to be linked with C libraries, to control C programs;

they are used for scripting embedded systems. Facilities built

on TCL, Expect for example allows easy scripting of

interactive programs unintended to be controlled by a script,

while TK allows a very fast designing of dialog box, buttons,

etc. It is very easy and flexible, with a consistent syntax and

has higher economy of expression than c, java, etc [10]. The

major limitation of TCL is its weak modularity and

namespace control facilities, making writing of big programs

hard. TCL is implemented for both Unix and Windows

Operating System.

Practical Extraction and Report Language (Perl) is a

scripting language majorly popular for string processing,

system administration, and web maintenance [11]. It was

developed by Larry Wall to replace AWK and to be used

Unix script programming. Perl more advanced language than

shell as it has stronger data types. Perl decreases the usage of

C for applications with little requirement for performance or

memory optimization. The drawbacks of Perl include the

difficulty in reading and understanding its making it difficult

to learn. Also, maintaining Perl codes as it becomes bigger is

also strenuous.

Python is a scripting language with a simple syntax that is

in between the Modula and C family. It can be integrated in

other application or used alone [9]. It can be integrated with

C and can import from and export data to C libraries that are

loaded dynamically. Its code block structure is controlled by

indentation. It provides both the object-oriented

programming and the procedural programming style or a

mixture of both styles. Python is suitable for writing dynamic

web pages, it can also use the Tk toolkit to build GUIs making

it suitable for building robots and network administration

scripts. Python and Java are the only programming languages

for large projects with multiple developers. Python is simpler

and friendlier than Java, it also support rapid prototyping

making it the most popularly taught programming language

[12]. Python are implemented both for Microsoft and

Macintosh operating systems.

Lisp is a functional language with lists and trees as its main

data types. Lisp automatically manages memory, and

operators overloading and garbage collection was first

introduced in it [13]. The major drawback of Lisp is the fact

that it is a collection of languages and not a single language,

thereby preventing it from delivering what it promised.

Currently, it is most suitable for tasks involving interactive

processing of database or file, building applications that are

integrated with text editors, or text editing functionalities. An

extension of Lisp is LISp-Miner Control Language which is a

language designed to automate the data mining process and

provides a means to control the features of LISp-Miner

system [7].

Job Control Language (JCL) was for controlling programs

and tasks, Visual Basic for programming Microsoft office

Applications, Markup Languages for distinguishing structure

from content, and making documents interactive, Practical

Extraction and Report Language (Perl) for generating reports

and creating dynamic web pages, Python language for

accessing kernel services of the Amoeba operating system

[14].

III. MATERIALS AND METHODS

FULangS is written in C as the parent language with other

tools for compiler construction. FLEX (Fast Lexical Analyzer

Generator) was deployed as lexical analysis and YACC (Yet

Another Compiler Compiler) was used as parse generator.

Other tools used in the development of FULangS are:

1) Cygwin x32, x64 -a Microsoft Windows platform

for GNU utilities (with all the necessary packages

for compiling lex and yacc)

2) Windows operating systems (both X32 and X64

bit)

IV. THE FULANGS PARADIGM

Generally, a computer programming language must have

four elements which are primitives (built-in things), means

of combination, means of capturing common patterns, and

means of abstraction. FULangS has three elements out of

the four elements mentioned above which are primitives

(built-in things), means of combination, and means of

abstraction. Primitives consist of primitive expressions and

statements, representing the smallest or simplest element of

the language. Examples are numbers (in base 10), strings

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-9, September 2017

 46 www.ijeas.org

(in double quotation marks), arithmetic operators, bitwise

operators, relational operators, logical operators.

Means of combination: defines means by which simpler

elements are combined to form compound ones

(expressions). Expression types can be:

a) Mathematical expressions which uses infix notation.

b) Call expressions which apply a function to a set of

arguments. The call expression consists of the operator

(function name) and the operands (arguments list) which

are enclosed in parentheses. The operands can be

primitive elements, mathematical expressions or call

expressions.

c) Input/output Expressions: to accept input, the keyword

‘fulin’ is used while ‘fulout’ is used to print output.

d) Containment: control structures which are specified

using if, for loop, while, do while statements are used to

segment a block of codes and specify when they are

executed.

Means of abstraction: defines means by which the

elements are named and used as a unit.

1) Naming of identifiers: the assignment statement is used

for naming values, it consists of a name to the left of =

and a value to the right. = is the assignment operator.

2) Data abstraction: data structure is used to specify the

data type of an expression. The data structures

implemented in FulangS are integer, double, string.

A. Language Elements

This section described the vocabularies of the FULangS

scripting language.

1) Keywords

Table 1 lists the set of terms with special meaning in

FULangS

Table 1. FULangS Keywords

Keywords Meaning/Functions

Fulprog Begins the program

Fulvar Variable declaration

End Ends the program

Or Logical Or operation

And And

If If

For For

Do Do

Skip Skip

<> Comment single line and
multi-line

While While

Fulin Input

Fulout Ouput

Else Else

Endif End if

Endfor End for

Endwhile End while

2) Comments

Comments are like helping text in the FULangS program

and they are ignored during execution of the program. They

start with < and terminate with the character > as shown

below:

<MyFirstProgram>

3) Delimiters

In a FULangS program, the semicolon is a statement

terminator. That is, each individual statement must be ended

with a semicolon. It indicates the end of one logical entity.

Given below are two different statements:

Fulout “Hello World”;Fulin x;

4) Identifiers

A FULangS identifier is a name used to identify a

variable item. An identifier starts with a letter A to Z or a to z

followed by zero or more letters, underscores, and digits (0 to

9). FULangS does not allow punctuation characters such as

@, $, and % within identifiers and they are case-sensitive.

Thus, ‘Power’ and ‘power’ are two different identifiers in

FULangS. Here are some examples of acceptable identifiers:

mohdzaraabcmove_name

a_123

myname50

Temp

 j

a23b9

retVal

5) Variables

A variable is a name given to a storage area that

FULangS programs can manipulate. Variable in FULangS

has a specific type Integer, which determines the size and

layout of the variable's memory; the range of values that can

be stored within that memory; and the set of operations that

can be applied to the variable. The name of a variable can be

composed of letters, digits, and the underscore character but it

must begin with either a letter or an underscore. As earlier

pointed out, upper and lowercase letters are distinct because

variable names in FULangS are case-sensitive. Variable list

may consist of one or more identifier names separated by

commas and terminated by semicolon. Example:

Fulprog
 i,j,k,l;
 fulvar

 <OtherStatements>;

 end

6) Operators

FULangS operators and their description are listed below:

+ Adds two operands

- Subtracts second operand from the first

* Multiplies both operands

/ Divides numerator by denominator

% Modulus Operator and remainder of after an

integer division

= Checks if the values of two operands are equal

or not, if yes, then condition becomes true.

<> Checks if the values of two operands are equal

or not, if values are NOT equal, then condition

becomes true.

> Checks if the value of left operand is greater

than the value of right operand, if YES, then

condition becomes true.

FULangS: A Capstone Scripting Tool

 47 www.ijeas.org

< Checks if the value of left operand is less than

the value of right operand, if YES, then

condition becomes true.

>= Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes, then condition becomes true.

<= Checks if the value of left operand is less than or

equal to the value of right operand, if yes, then

condition becomes true.

<< left shift

>> Right shift

| Bitwise Or

& And

Exclusive Or

OR Or

AND And

7) Expression Types

Expressions are constructs denoting rules of computation

for obtaining values of variables and generating new values

by the application of operators. FULangS expressions could

be made up of a single element or combination of multiple

elements and can be used to specify arithmetic operations,

bitwise operations, relational operations, logical operations

and string manipulation.

a. Assignment expression is used to assign strings or

numbers or an expression to a variable.

b. Arithmetic expressions are used to perform arithmetic

operations on numbers and strings.

c. Relational expressions are used to compare two

expressions to return true or false.

d. Logical expressions are used to combine two or more

relational expressions and also return true or false.

e. Function call expressions are used to call in-built

functions.

Below are the different type of FULangS expression with

examples (Table 2).

8) Data Types

The current release of FULangS accepts only integers,

string and double as basic datatypes. All other types are

derived from these three.

9) Functions

A function is a group of statements that together perform a

specific task. The FULangS language provides two sets of

built-in functions: math functions (Table 3) and string

functions (Table 4).

Table 3. FULangS Built-in Math Functions
Math function Description

mathSqrt()
This function is used to find square root of

the argument passed.

mathCeil()

This function returns nearest integer
value which is greater than or equal

to the argument passed.

mathFloor()

This function returns the nearest integer
which is less than or equal to the

argument passed.

mathFabs()
This function returns the absolute value

of the argument passed.

mathExp()
This function is used to calculate the

exponential “e” to the xth power.

mathLog10()
This function is used to calculates base 10

logarithm.
mathLog() This function is used to calculates natural

logarithm.

mathSin()
This function is used to calculate sine

value.

mathCos()
This function is used to calculate cosine

value.

mathTan()
This function is used to calculate sine

tangent.

mathSinh()
This function is used to calculate

hyperbolic sine.

mathCosh()
This function is used to calculate

hyperbolic cosine.

mathTanh()
This function is used to calculate

hyperbolic tangent.
mathAtan() This function is used to find arc tangent.
mathAsin() This function is used to find arc sine.
mathAcos() This function is used to find arc cosine.

mathMod()
This function is used to find modulo

arithmetic.

mathPow()
This function is used to find the power of

the given number.

average()
This function returns the average value of

the arguments passed.

min()
This function returns the average value of

the arguments passed.

max()
This function returns the average value of

the arguments passed.

sum()
This function returns the average value of

the arguments passed.

mul()
This function returns the average value of

the arguments passed.

10) FULangS Special Features

Garbage Collection

FULangS uses a modified mark-sweep algorithm to

implement the Boehm-Demers-Weiser conservative

garbage collector. FULangS allows programmers

allocate memory normally, and automatically recycles

memory when it determines that it can no longer be

otherwise accessed without causing the programmer to

explicitly de-allocate the memory when no longer in use.

Conceptually it operates roughly in four phases,

which are performed occasionally as part of a memory

allocation which are the Preparation phase, Mark phase,

Sweep phase and Finalization phase.

Virtual machine

The FULangS virtual machine is employed to allow

the implementation of control structures in the language.

Interpreting if, for loop, while, and do while control

structures was not possible, as a result virtual machine

was employed to compile the control structures.

Stack Machine

Stack machine are implemented in FULangS to

evaluate arithmetic operations, bitwise operation, input

and output and terminate the program execution.

Sample Programs

The “Hello World”

The FULangS implementation of the “Hello World” is

shown below (Figure 1)

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-9, September 2017

 48 www.ijeas.org

Figure 1. FULangS implementation of the “Hello World”

script

Other sample scripts are listed below:
===

=
<ProgramPrintEvenNumbers>

fulprog

na,x;

fulvar

fulinna;

fulin x;

whilena =< x do fuloutna; na = na+2; endwhile;
end

===

=
<programTestwhile>

fulprog

na,x;

fulvar

fulinna;

fulin x;

whilena =< x do fuloutna;na++; endwhile;

end

===

=<FibonacciSeriesProgram>
fulprog

prev,next,sum,n,count;

fulvar

fulin count;

n = 1;

prev = 1;

next = 1;

while n =< count do fuloutprev; sum = prev + next;prev

= next; next = sum; n = n+1; endwhile;

end

===

=
<programSumNumbers>

fulprog

i,sum;

fulvar

sum = 0; i=1;

while i =< 1000 do sum = sum + i; i = i + 1; endwhile;

fulout sum;

end

===

=
<programShortIncrement>

fulprog

s;

fulvar

s=3;

s=s++;

fulout s;

end

===

=
<programBitwiseOperation>

fulprog

fulvar

fulout 3 | 4;

fulout 3 & 4;

fulout 3 # 4;

fulout 3 << 4; fulout 3 >> 4;

end

===

=
<programShortSub>

fulprog

x;

fulvar

x = 2;

fulout x-=2;

fulout x;

end

===

=
<programArithmeticTest>

fulprog

na,x;

fulvar

fulinna;

fulin x;

fulout na + x;

fulout na * x;

fulout na - x;

fulout na / x;

fulout na % x;

fulout na^3;

end

===

=
fulprog

fulvar

fulout "HelloWorld";

end

===

=
<programtofactorial>

fulprog

fac,i,num;

fulvar

fulinnum;

fac = 1; i=1;

for i =<num do fac =fac * i; i=i+1; endfor;

fuloutfac;

end

===

=
<programtShortArithmetic>

fulprog

a,b;

fulvar

a = 4; b = 2;

fulout a += b;

fulout a *= b;

fulout a -= b;

fulout a /= b;

fulout a %= b;

end

===

=
<programprintnumbers>

fulprog

i,x;

fulvar

fulin x;

i=0;

for i =< x do fulout i; i = i+1; endfor;

end

===

=
<programTestConditions>

fulprog

a,b,c;

fulvar

fulin a; fulin b; fulin c;

if (a<b) or (b<c) then

fulout (a+b)*c; else

fulout (a*c); endif;

if (a>b) and (b<c) then fulout (a*c);

else fulout (a+c); endif;

end

===

=
<programAp>

fulprog

i,sum,x;

fulvar

fulin x;

FULangS: A Capstone Scripting Tool

 49 www.ijeas.org

sum=0; i=1;

while i=<x do sum=sum+i;

i=i+1; endwhile;

fulout sum;

end

===

=
fulprog

prev,nex,sum,n,coun;

fulvar

fulin coun;

n = 1;

prev = 1;

nex = 1;

while n =< coun do fulout prev; sum = prev + nex;prev

= nex; nex = sum; n = n+1; endwhile;

end

===

=
<programPrintSum>

fulprog

i,sum;

fulvar

sum = 0;

i=1;

while i =< 1000 do sum = sum + i; i = i + 1; endwhile;

fulout sum;

end

===

=
fulprog

s;

fulvar

s=3;

s=s++;

fulout s;

end

===

=
fulprog

x;

fulvar

x = 2;

fulout x-=2;

fulout x;

end

===

=
fulprog

na,x;

fulvar

<testOperators>

fulin na;

fulin x;

fulout na + x;

fulout na * x;

fulout na - x;

fulout na / x;

fulout na % x;

fulout na^3;

end

===

=<programExpressions>
fulprog

a,b;

fulvar

a = 4; b = 2;

fulout a += b;

fulout a *= b;

fulout a -= b;

fulout a /= b;

fulout a %= b;

end

===

=
<programFnctions>

fulprog

fulvar

fulout average(4,5,6,7,8,2);

fulout sum(5,9,6,45,5,3,4,65,7);

fulout mul(2,56,8,5,3,5);

fulout min(5,7,5,43,9);

fulout max(23,68,7,3,3,6,3,56);

end

===

=
<programFunctions>

fulprog

x,y,z,;

fulvar

x = average(4,5,6,7,8,2);

y = sum(5,9,6,45,5,3,4,65,7);

z = mul(2,56,8,5,3,5);

w = min(5,7,5,43,9);

t = max(23,68,7,3,3,6,3,56);

fulout x;

fulout y;

fulout z;

fulout w;

fulout t;

end

===

=
<StringTest>

fulprog

next,prev;

fulvar

next = strlen("Abdulwahab");

prev = strlen("Obansa");

if next == prev then fulout next; else fulout prev;

endif;

end

===

=
<StringTest>

fulprog

fulvar

fulout concat("Memu","natu");

fulout isEqual("Memunat","Memunatu");

fulout strlen("Memunat");

fulout toUpper("Memunat");

fulout toLower("MEMUNATU");

fulout revstr("Menunat");

end

===

=
<LogicalOperators>

fulprog

fulvar

fulout 3 | 4;

fulout 3 & 4;

fulout 3 # 4;

fulout 3 << 4; fulout 3 >> 4;

end

V. CONCLUSION

The quasi-scripting language FulangS has been

designed based on the flex and bison working on the Cygwin

environment to facilitate the construction of verifiable scripts.

The development of the programing language FULangS is

based on two principal aims, first to make available a set of

syntax suitable to teach scripting as a systematic discipline

based on certain fundamental concepts, and also to develop a

set of semantic dimensions which are both efficient and

reliable on presently available PC.

FULangS can be used for command line scripting i.e.

the codes can run without server, browser or GUI (Figure 2).

It can also be used to perform arithmetic operation, strings

manipulation and developing small applications and only

accepts procedural codes. The alphabets of the language are

similar to those of other quasi-scripting paradigms but

FULangS provides dual supports for both compilation and

interpreting. The compiled part of FULangS supports only

integer arithmetic operations while the interpreted part

supports floating-point arithmetic, integer arithmetic and few

string operations as it only accepts only integers, string and

double as basic datatypes in its current release. Other

datatypes however can be specified in terms of these three.

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-9, September 2017

 50 www.ijeas.org

FULangS support implicit garbage collection using the

Boehm-Demers-Weiser approach.

Figure 2. Command line scripting in FULangS

REFERENCES

[1] Bebbington, S. (2014a). "What is coding". Blog post by Shau

Bebbington on the Yearofcode project. Accessed July 2017 from

http://yearofcodes.tumblr.com/what-is-coding

[2] Bebbington, S. (2014b). "What is programming”. Blogpost by Shau

Bebbington on the Yearofcode project. Accessed July 2017

http://yearofcodes.tumblr.com/what-is-programming

[3] Schwalb, E. M. (2004). ITV Handbook: Technologies and Standards.

Prentice Hall, New Jersey, USA. Pp. 222

[4] Richards, G., Lebresne, S., Burg, B., & Vitek, J. (2010). An Analysis

of the Dynamic Behavior of JavaScript Programs. PLDI’10. Toronto,

Ontario, Canada.: ACM.

[5] Thiemann, P. (2008). Types and Analysis for Scripting Languages.

Mini Lecture, Tallinn, Estland Universitat Freiburg, Germany.

Retrieved 09 01, 2017, from IoC: cs.ioc.ee/tarmo/tasl08/tasl/pdf

[6] Patra, P. K., & Pradhan, P. L. (2014). Dynamic Virtual Programming

Optimizing the Risk on Operating System. Telkomnika Indonesian

Journal of Electrical Engineering12 (8), 6369-6379.

[7] Simunek, M. (2014). LISp-Miner Control Language description of

scripting language implementation. Journal of Systems Integration

2014 (2), 28-44.

[8] Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2014). A Large Scale

Study of Programming Languages and Code Quality in Github.

FSE’14. Hong Kong: ACM.

[9] Gu, L., Yan, N., & Xiu, Y. (2017). Discussion on Teaching Methods

and Choice of Programming Language on Software Engineering

Major. 2017 Asia-Pacific Engineering and Technology Conference

(APETC 2017) (pp. 1681-1686). Kuala Lumpur: DEStech

Publications, Inc.

[10] Nanz, S., & Furia, C. A. (2015). A Comparative Study of

Programming Languages in Rosetta Code. ICSE '15 Proceedings of

the 37th International Conference on Software Engineering - Volume

1. Pages 778-788

[11] Doug, S. (2000). "Beginner's Introduction to Perl". Retrieved

10-07-2017 from https://www.perl.com/pub/2000/10/begperl1.html

[12] Godwin-Jones, R. (2015). The evolving roles of language teachers:

Trained coders, local researchers, global citizens. Language Learning

& Technology, 19(1) pp. 10–22

[13] David, C. (2011). Influential Programming Languages, Part 4: Lisp.

Downloaded 10-09-2017 from

www.informit.com/articles/article.aspx?p=1671639

[14] Kanavin A. (2002). An overview of Scripting Languages.

Lappeenranta University of Technology. Finland, December, 2002.

pp.10

Francisca O. Oladipo is an Associate Professor and current

Head, Department of Computer Science, Federal University, Lokoja

Nigeria.

Memunat A. Ibrahim is completing her B.Sc program in

Computer Science at the Federal University Lokoja, Nigeria. She is

passionate about engineering of programming languages and programming

tools to make learning easier.

Abdul-Ahad U. Obansa,b is a final year student in the

Department of Computer Science, Federal University Lokoja, Nigeria.

Ahad’s research interests is in development of usable tools for humanity.

Abdulwahab A. Jatto is a final year student in the Department

of Computer Science, Federal University Lokoja, Nigeria. His main

research focus is development of scripting paradigms for low-scale

hardware.

Table 2. FULangS Expression Types

Expression Sign Description Expression

Description

Example

Assignment

expression

= Assign strings

or numbers or

an expression

to a variable

identifier=Expression

;

A=5;

B=A+2;

Arithmetic

expression

+

/

-

*

%

Addition

Division

Subtraction

Multiplication

Modulus

Expression+

Expression;

Expression/

Expression;

Expression-

Expression;

Expression*

Expression;

Expression%

Expression;

A+2;

A/B;

A-B;

A*B;

A%B;

Relational

expression

==

!=

>

<

>=

<=

Is equal to

Is not equal to

Is greater than

Is less than

Is greater than

or equal to

Is less than or

equal to

Expression==Expres

sion

Expression!=Express

ion

Expression>Expressi

on

Expression<Expressi

on

Expression>=Expres

sion

Expression<=Expres

sion

A==B

A!=B

A>B

A<B

A>=B

A<=B

Logical

expression

OR

AND

Or

And

Expression or

Expression

Expression and

Expression

A>B or

B>C

A>B and

B>C

Function call

expression

 Expression

(Expression)

mathFlo

or(3)

